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This paper presents CONORBIT, a derivative-free algorithm for constrained black-box
optimization where the objective and constraint functions are computationally expensive.
CONORBIT employs a trust-region framework that uses interpolating radial basis function
(RBF) models for the objective and constraint functions and is an extension of the ORBIT
algorithm (Wild, Regis, and Shoemaker 2008). It uses a small margin for the RBF model con-
straints to facilitate the generation of feasible iterates, and extensive numerical tests confirm
that such a margin is helpful in improving performance. CONORBIT is compared with other
algorithms on 27 test problems, a chemical process optimization problem, and an automotive
application. Numerical results show that CONORBIT performs better than COBYLA (Pow-
ell 1994), a sequential penalty derivative-free method, an augmented Lagrangian method, a
direct search method, and another RBF-based algorithm on the test problems and on the
automotive application.
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1. Introduction

In this paper we develop a derivative-free algorithm for constrained optimization where
the objective and constraint functions are black box and computationally expensive.
Formally, our goal is to solve the nonlinear optimization problem

min {f(x) : g(x) ≤ 0, l ≤ x ≤ u} , (1)

where f : Rn → R is the objective function, g : Rn → Rq is the vector-valued inequality
constraint function, and l, u ∈ Rn are the lower and upper bounds on the variables,
respectively. We let gi(x) denote an individual inequality constraint function, and so
g(x) = (g1(x), . . . , gq(x)). Here, f and g are black-box functions whose values are outputs
of a computationally expensive, but deterministic, simulation and whose derivatives are
unavailable.
For convenience, we employ set notation for the constraints. Thus, we let

B = {x ∈ Rn : l ≤ x ≤ u} (2)
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denote the region corresponding to the bound constraints and take

Ω = {x ∈ B : g(x) ≤ 0} (3)

to be the feasible region of (1).
We assume the following about the feasible region:

(C1) The set B is bounded and has a nonempty interior (−∞ < l < u <∞).
(C2) f and g are continuously differentiable on the set B.
(C3) Ω has a nonempty interior.

As a consequence of (C1), Ω is bounded. As a consequence of (C2), the constraints
g(x) ≤ 0 are assumed to be quantifiable and relaxable on the bounded region B; see [25]
for formal definitions of these terms. For now, we assume, through (C3), that there are
no black-box equality constraints. Moreover, we assume that a feasible starting point is
given. This last assumption is not unreasonable in many engineering design problems,
since a practitioner often has an existing, feasible design and is looking for an improved
solution. Future work will extend the proposed algorithm to target black-box equality
constraints and infeasible starting points.
Our approach to solving (1) employs interpolating radial basis function (RBF) models

for the objective and constraint functions within a trust-region framework. The proposed
algorithm is called CONORBIT (CONstrained Optimization by Radial Basis Interpola-
tion in Trust-regions) and is an extension of the ORBIT algorithm for unconstrained
optimization by Wild, Regis, and Shoemaker [40]. After reviewing the relevant literature
in Section 2, we describe the proposed CONORBIT algorithm in Section 3. Notably,
we do not include an asymptotic analysis of the algorithm, focusing instead on a more
comprehensive numerical study. Section 4 describes the setup for the computational ex-
periments used to evaluate the practical performance of CONORBIT. The problems
considered include 27 test problems, a chemical process optimization problem, and an
automotive application. Section 5 presents the numerical results on these problems, and
comparisons with a variety of constrained optimization methods, including COBYLA
[30], NOMAD [24], a sequential penalty derivative-free method called SDPEN [26], an
augmented Lagrangian method with BOBYQA [33] as the subalgorithm, and ConstrLM-
SRBF [34]. Section 6 provides a summary and outlines future work.

2. Related Work

Two main types of derivative-free algorithms for local black-box optimization are direct
search and model-based methods [10]. Direct search methods typically follow geometric
patterns for selecting their iterates; model-based methods maintain surrogate models
of the black-box functions and use these models to select iterates. Because model-based
methods are able to exploit some curvature information through the approximation mod-
els, they tend to work better than pure direct search methods on smooth functions [13].
On the other hand, direct search methods tend to work better when the functions are
noisy or nonsmooth, and these methods are usually easy to parallelize. Hybrid approaches
also have been developed in which models are used within a direct search framework; see,
for example, [10]. An extensive treatment of derivative-free optimization can be found in
[13].
Direct search methods for unconstrained optimization include the simplex reflection

method by Nelder and Mead [28] and pattern search and its extensions [23, 39]. Among
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the model-based methods for unconstrained optimization are trust-region methods that
use quadratic interpolation models [11, 31, 32] and RBF interpolation models [29, 40].
Examples of hybrid approaches where models are used in direct search include pattern
search with kriging [6], pattern search with RBF models [38], and pattern search guided
by simplex gradients [15].
Direct search algorithms for constrained black-box optimization include mesh adap-

tive direct search (MADS) [3], which is an extension of pattern search that can handle
black-box constraints. MADS is implemented in the NOMAD software [24], which uses
various constraint-handling techniques (e.g., a progressive barrier [4]) and can employ
quadratic models for the objective function [10]. Other direct search methods for con-
strained optimization include SDPEN (sequential penalty derivative-free algorithm) [26]
and the line-search-based algorithm by Fasano et al. [18].
One of the earliest model-based methods for constrained black-box optimization is

COBYLA (Constrained Optimization BY Linear Approximation, [30]), a trust-region
algorithm that uses linear interpolation models for the objective and constraint func-
tions. Brekelmans et al. [8] also developed a derivative-free trust-region approach for con-
strained optimization that uses the filter method by Fletcher and Leyffer [19] and builds
local linear approximations of a black-box function that feeds into the objective and
constraint functions. Sinoquet and Langouet [36] proposed SQA (sequential quadratic
approximation), a trust-region algorithm that uses quadratic interpolation models and is
an extension of NEWUOA [32] for constrained black-box optimization. In addition, Diniz-
Ehrhardt et al. [16] developed derivative-free augmented Lagrangian methods that can
employ model-based algorithms such as BOBYQA (Bound Optimization BY Quadratic
Approximation) [33]. More recently, Augustin and Marzouk [5] developed NOWPAC,
which uses p-reduced fully linear models of the objective and constraints within a trust-
region framework. NOWPAC handles constraints by using an inner boundary path that
guides the iterates to become strictly feasible.

3. A Derivative-Free Trust Region Algorithm for Constrained Black-Box
Optimization

This section describes the CONORBIT (CONstrained Optimization by Radial Basis func-
tion Interpolation in Trust regions) algorithm, which is an extension of the ORBIT al-
gorithm [40] that specifically addresses black-box inequality constraints. CONORBIT
employs a trust-region framework and uses RBFs to model the objective f and each of
the constraint functions gi. We assume that a feasible starting point is given, but the
proposed method can be extended to deal with an infeasible starting point (e.g., within
a multistart framework to account for multimodalities in the feasibility metric).
In the CONORBIT algorithm, bound constraints are treated as unrelaxable (see [25])

and hence all points generated by the algorithm satisfy the bound constraints. As a result,
f and g are never evaluated at points outside of B. Moreover, given a feasible starting
point x0, CONORBIT maintains the invariant that all iterates (i.e., the trust-region
centers) remain feasible: xk ∈ Ω for all k ≥ 0.
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3.1 Notation and Preliminaries

Before we describe the algorithm, we first formalize our notation. As in [40, 41], we work
with a general norm ‖ · ‖k, and we let c1 be a constant that depends only on n such that

‖ · ‖ ≤ c1‖ · ‖k, ∀k. (4)

For notational convenience, we work with interpolation sets relative to some base point
xb ∈ Rn, which is typically the center of the current trust region. Using set notation,
we have xb + Y = {xb + y : y ∈ Y}, where Y = {y1, y2, . . . , y|Y|} ⊂ Rn and the

function values f(xb+ yi), i = 1, . . . , |Y| are known. Consequently, if mf is a model that
interpolates f at xb + Y, then

mf (xb + yi) = f(xb + yi), i = 1, . . . , |Y|. (5)

We always interpolate f at the base point xb; thus, we assume, without loss of gener-
ality, that y1 = 0 ∈ Y. Moreover, the RBF models that we use require at least n + 1
interpolation points so that |Y| ≥ n+ 1.
By Rk(x,∆) we denote a trust region (in terms of the norm ‖ · ‖k) of radius ∆ > 0

centered about x ∈ B, Rk(x,∆) = {y ∈ Rn : ‖x− y‖k ≤ ∆}.
We let e denote the vector of ones and ei the ith column of the identity matrix, the

dimension of each being derived from the context. We denote the indicator (Dirac delta)
function for an event a by I[a].
An important requirement for the interpolation models used in the ORBIT algorithm

is that they be fully linear within some neighborhood of the current iterate. This ensures
that the model satisfies first-order Taylor-like error bounds within that neighborhood.
We recall some definitions and main results from [13, 40, 41].

Definition 3.1 Suppose xb ∈ Rn and f ∈ C1[Rk(xb,∆)]. A model mf ∈ C1[Rk(xb,∆)]
for f is said to be fully linear on Rk(xb,∆) if there exist constants κef and κeg such that

|f(x)−mf (x)| ≤ κef∆
2 and ‖∇f(x)−∇mf (x)‖ ≤ κeg∆, (6)

for all x ∈ Rk(xb,∆).

The following theorem from [41] provides constants κef and κeg that satisfy the con-
ditions in Definition 3.1. For the moment, we will work with a subset Y = {y1 =
0, y2, . . . , yn+1} corresponding to exactly n + 1 interpolation points including the base
point.

Theorem 3.2 Suppose f and mf are continuously differentiable functions on Rk(xb,∆)
and that ∇f and ∇mf are Lipschitz continuous on Rk(xb,∆) with Lipschitz constants
γf and γm, respectively. Further, suppose mf satisfies the interpolation conditions in (5)

at a set of points {y1 = 0, y2, . . . , yn+1} ⊂ Rk(xb,∆)− xb such that ‖Y −1‖ ≤ ΛY

c1∆
, where

Y = [y2, . . . , yn+1] ∈ Rn×n, for some fixed constant ΛY and c1 from (4). Then, for any
x ∈ Rk(xb,∆),

|f(x)−mf (x)| ≤ √
nc21(γf + γm)

(
5

2
ΛY +

1

2

)
∆2,

‖∇f(x)−∇mf (x)‖ ≤ 5

2

√
nΛY c1(γf + γm)∆.
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As mentioned in [41], Theorem 3.2 holds for general interpolation models, and the
conditions on the interpolation points are equivalent to requiring that the points {y1 =
0, y2, . . . , yn+1} are sufficiently affinely independent, with ΛY quantifying the degree of
independence.
Given a set D = {d1, . . . , d|D|} ⊂ Rk(xb,∆)−xb, where f(xb+d1), . . . , f(xb+d|D|) are

known, Conn et al. [12] note that a set of points {y1 = 0, y2, . . . , yn+1} ⊂ Rk(xb,∆)− xb
satisfying the conditions in Theorem 3.2 can be constructed by means of LU- and QR-like
algorithms. In particular, Wild et al. [40] show how to obtain such a set of interpolation
points so that the resulting RBF models are fully linear within some neighborhood of
the trust-region center. This procedure will be described in Section 3.6.
Our last piece of notation employed in the algorithm concerns an approximate feasible

region. Given a model function mg
k : Rn → Rq, we define

Ωm
k =

{
x ∈ B : mg

k(x) ≤ 0
}
. (7)

We note that, without further conditions on mg
k, it is possible that Ωm

k = ∅, even when
the domain Ω in (3) is nonempty.

3.2 Criticality Measure

For our secondary termination measure (the primary being a budget on the number of
function evaluations), we will employ a projection onto a possibly nonconvex set. We
first formalize what we mean by projection.

Definition 3.3 Let A 6= ∅ be a closed set in Rn. The projection set of x ∈ Rn onto A
is

PA(x) := {z ∈ A : ‖z − x‖ ≤ ‖y − x‖ ∀ y ∈ A},

and any z ∈ PA(x) is called a projection of x onto A.

We recall that PA(x) 6= ∅ for any x ∈ Rn; this follows because A is a nonempty, closed
set and the sublevel sets of the function ‖ · −x‖ are compact. Furthermore, if A is also
convex, we can show that PA(x) is a singleton.
Next, we define the distance of a point x ∈ A to a projection set PA(x + u) for some

direction u.

Definition 3.4 Given a closed set A 6= ∅ in Rn, a point x ∈ A, and a nontrivial
direction u ∈ Rn, define

dA(x, u) = min {‖x− z‖ : z ∈ PA(x+ u)} . (8)

Although the projection of x+u onto A may not be unique for nonconvex A, by asking
for the minimum distance from x to the projection set PA(x+ u), the distance measure
in (8) is well defined. The following proposition motivates the use of this distance as a
measure of optimality.

Proposition 3.5 If x∗ ∈ Ω and f is differentiable at x∗, then dΩ(x∗,−∇f(x∗)) = 0 if
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and only if x∗ satisfies the first-order necessary condition for (1) that

∇f(x∗)T (y − x∗) ≥ 0 for all y ∈ Ω. (9)

Proof. If dΩ(x∗,−∇f(x∗)) = 0, then by the convexity of ‖x∗ − ·‖ and the definition in
(8), z∗ = x∗ ∈ argminy∈Ω ‖x∗ −∇f(x∗)− y‖2. A first-order necessary condition for this
problem is that ∇f(x∗)T (y − x∗) ≥ 0 for all y ∈ Ω.
On the other hand, if ∇f(x∗)T (y − x∗) ≥ 0 for all y ∈ Ω, then ‖x∗ −∇f(x∗) − y‖2 −
‖x∗−∇f(x∗)−x∗‖2 = ‖x∗−y‖2−2∇f(x∗)T (x∗−y) ≥ 0 for all y ∈ Ω. As a consequence,
z = x∗ ∈ Ω is feasible with respect to the constraints in (8). Since z = x∗ attains the
lower bound of zero for ‖x∗ − z‖, it follows that dΩ(x∗,−∇f(x∗)) = 0. �

3.3 Error Bound on Criticality Measure for Convex Domains

In this section, we consider the special case when Ωm
k is a nonempty, closed convex

set and hence the projection onto Ωm
k is unique. For such constraint sets, the following

proposition holds (see, e.g., [7]).

Proposition 3.6 Let A 6= ∅ be a closed convex set in Rn. Then the projection mapping
PA : Rn → A is unique and satisfies ‖PA(x) − PA(y)‖ ≤ ‖x − y‖, ∀x, y ∈ Rn. That is,
PA is Lipschitz continuous with constant 1.

Using this result, we can derive the following bound relating our criticality measure

dΩm
k
(xk,−∇mf

k(xk)) to a criticality measure based on the objective function’s gradient
at xk.

Proposition 3.7 Suppose that Ωm
k in (7) is a nonempty, closed convex set, that mf

k is

fully linear on Rk(xk, ǫ1), and that dΩm
k
(xk,−∇mf

k(xk)) ≤ ǫ2 for some ǫ1, ǫ2 > 0. Then

dΩm
k
(xk,−∇f(xk)) ≤ κegǫ1 + ǫ2,

where κeg is the constant from (6).

Proof. Using Proposition 3.6, we have that

dΩm
k
(xk,−∇f(xk)) = ‖xk − PΩm

k
(xk −∇f(xk))‖

≤ ‖xk − PΩm
k
(xk −∇mf

k(xk))‖
+‖PΩm

k
(xk −∇mf

k(xk))− PΩm
k
(xk −∇f(xk))‖

= dΩm
k
(xk,−∇mf

k(xk)) + ‖PΩm
k
(xk −∇mf

k(xk))− PΩm
k
(xk −∇f(xk))‖

≤ ǫ2 + ‖∇f(xk)−∇mf
k(xk)‖ ≤ κegǫ1 + ǫ2,

where the last inequality follows from Definition 3.1. �

We note that the above bound still involves the approximation of the feasible set Ω by
the set Ωm

k . In a variety of settings, however, one can expect that dΩm
k
(xk,−∇f(xk)) =

dΩ(xk,−∇f(xk)), and hence this bound would also apply to the stationary measure
in Proposition 3.5. Examples where this holds include when a gradient step is feasible
(xk − ∇f(xk) ∈ Ω ∩ Ωk

m) and when the constraint functions active at xk − ∇f(xk) are
linear and an RBF model with a linear polynomial tail is used (so that the corresponding
mgi

k are also linear).
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3.4 Algorithm Description

We now present Algorithm 1, which is a general derivative-free trust-region algorithm
for constrained black-box optimization. The input parameters are as follows:

• η1: Ratio threshold for the contraction and expansion of the trust region (0 < η1 < 1)
• γ0, γ1: Contraction and expansion factors for the trust-region radius (0 < γ0 < 1 < γ1)
• β: Constant that provides a required minimum step-size factor before the trust region

is expanded (β ∈ (0, 1])
• x0: Feasible starting point (x0 ∈ Ω)
• ξ: Constraint model margin (ξ ≥ 0)
• ∆0: Initial trust-region radius (∆0 ∈ (0,∆max])
• ∆max: Maximum trust-region radius (∆max ∈ (0,maxi{ui − li}])
• µf : Maximum number of (objective, constraint) function evaluations (µf ≥ n+ 2)
• ε: Tolerance for criticality measure.

In Algorithm 1, the parameters are initialized in Step 0. Then, the models mf
k and

mg
k for the objective and constraint functions are formed in Step 1.1. The RBF models

used in CONORBIT are described in Sections 3.6–3.7. For Algorithm 1, we require only

that the models mf
k ,m

g
k interpolate f, g at xk and that they can be made fully linear in

Rk(xk,∆k) in a finite number of function evaluations. We note that since x0 ∈ Ω and
that the update (13) moves xk only to feasible points, it follows that xk ∈ Ω for all k. As
an immediate consequence of mg

k interpolating g at xk and xk ∈ Ω, it follows that Ωm
k is

always nonempty (since xk ∈ Ωm
k ).

Termination occurs when either the maximum number, µf , of evaluations have been
performed or the criticality test in Step 1.2 is satisfied. We note that the distance dΩm

k

is well defined because Ωm
k 6= ∅.

In Step 1.3, a trust-region subproblem is solved. Using models that are twice continu-
ously differentiable and whose derivatives are easy to calculate (which is the case for our
RBF models) facilitates local solution of this subproblem using standard derivative-based
methods.
In the basic case when ξ = 0, we note that the subproblem (10) is simply minimizing

the model of the objective function, mf
k , subject to the trust-region constraint, bound

constraints, and model constraints mg
k(x) ≤ 0:

min
{
mf

k(x) : x ∈ Rk(xk,∆k) ∩ Ωm
k

}
.

If xk is strictly feasible in the original problem (i.e., g(xk) < 0 and xk ∈int(B)), then xk
is also strictly feasible in the trust-region subproblem with ξ = 0. Furthermore, if mg

k
is also continuous (which is the case for the RBF models introduced next), then there
exists a neighborhood around xk where the components of mg

k are all strictly negative,
and so the trust-region subproblem with ξ = 0 will have a nonempty interior.
The case when ξ > 0 facilitates the generation of feasible trial points by enforcing a

margin for constraints that are sufficiently inactive at xk. In the computationally expen-
sive setting, only a limited number of objective and constraint function evaluations can
be performed, and so a user may place a premium on generating feasible points. The
numerical experiments in Section 4 provide evidence that such a margin improves the
performance of CONORBIT in the setting where (near-)feasible points are demanded.
The margin is particularly helpful when one of the model constraints is active at the
solution of the trust-region subproblem with ξ = 0. Since the model constraints are ap-
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Algorithm 1 General constrained derivative-free algorithm.

0. Initialization. Set constants β ∈ (0, 1], η1 ∈ (0, 1), 0 < γ0 < 1 < γ1 <∞, ξ ≥ 0 and
∆max ∈ (0,∞). Input x0 ∈ Ω, ∆0 ∈ (0,∆max], ε, and µf ; set k = 0.

1. Check budget. While fewer than µf evaluations have been performed:

1.1 Form models. Obtain models mf
k and mg

k based on an interpolation set
xk + Y containing xk.

1.2 Conduct criticality test. If dΩm
k
(xk,−∇mf

k(xk)) ≤ ε:

(a) If the models mf
k and mg

k are not fully linear on Rk(xk,∆k), then make

mf
k and mg

k fully linear on Rk(xk,∆k). Return to 1.
(b) ElseIf ∆k > ε, update ∆k = γ0∆k, and return to 1.2.
(c) Else: exit algorithm with approximate solution xk.

1.3 Obtain step. Approximately solve the subproblem

min

{
mf

k(x) : m
g
k(x) + ξ

q∑

i=1

I[gi(xk)≤−ξ]ei ≤ 0, x ∈ Rk(xk,∆k) ∩ B
}
, (10)

and let x+ be the solution obtained.
1.4 Evaluate candidate. If x+ 6= xk, then evaluate f and g at x+.

In any case, set

ρk =

{
−∞ if x+ = xk

f(xk)−f(x+)

mf
k(xk)−mf

k(x+)
else.

(11)

1.5 Update trust region. Adjust the trust region according to the ratio ρk,

the feasibility of x+, and the quality of the models mf
k and mg

k:

∆k+1 =





min{γ1∆k,∆max} if x+ ∈ Ω and ρk ≥ η1 and ‖x+ − xk‖k ≥ β∆k,
γ0∆k if x+ ∈ Ω and ρk < η1 and

the models mf
k ,m

g
k are fully linear on Rk(xk,∆k),

γ0∆k if x+ /∈ Ω and

the models mf
k ,m

g
k are fully linear on Rk(xk,∆k),

∆k otherwise.
(12)

xk+1 =





x+ if x+ ∈ Ω and ρk ≥ η1,
x+ if x+ ∈ Ω and 0 < ρk < η1 and

the models mf
k ,m

g
k are fully linear on Rk(xk,∆k),

xk otherwise.
(13)

1.6 Model improvement. If xk+1 = xk, m
f
k and mg

k are not fully linear on
Rk(xk,∆k), and x+ is not a model-improving point:

Evaluate f and g at a model-improving point x− ∈ Rk(xk,∆k) ∩ B.
1.7 Iterate. Update k ← k + 1, and return to 1.

8



proximations of the actual constraints, a point on the boundary of a model constraint
may not be on the boundary of the corresponding actual constraint. By using a margin,
we are making it more likely that the iterate satisfies the actual constraints. Note that
when there are many inequality constraints, only one constraint violation is needed to
render the iterate infeasible. The idea of using a margin for model constraints was first
introduced in Regis [35] and was found to be helpful for the COBRA algorithm on the
MOPTA08 automotive problem [22] with 124 variables and 68 inequality constraints.
The idea is somewhat similar to the inner boundary path introduced by Augustin and
Marzouk [5] that guides iterates to become strictly feasible.
The form of subproblem (10) tightens each nonlinear constraint model that is suf-

ficiently inactive (as measured by the user-input ξ ≥ 0). The indicator I[gi(xk)≤−ξ] is
employed to ensure that the feasible region of (10) remains nonempty for all values of
ξ. In practice, it may be beneficial to use different margins, ξ1, . . . , ξq, for different con-
straint functions and/or to update the margin width ξ as the algorithm progresses. For
simplicity, here we keep the scalar value ξ fixed for all iterations.
As described above, Algorithm 1 maintains feasible iterates xk. However, the solution

of the trust-region subproblem x+ might coincide with the current center of the trust
region xk. This is the reason for our extended-real-valued ρk update in Step 1.4. In
addition to preventing a repeated evaluation of the expensive f, g at x+ = xk, the
update ensures that a model-improving point x− will be the next point evaluated. Such
evaluation either will be based on the current trust-region radius ∆k (when the models are

not fully linear on Rk(xk,∆k)) or based on a radius γj0∆k, occurring after j consecutive
radius reductions have caused the models to be no longer fully linear on the updated
trust region Rk(xk+j ,∆k+j) = Rk(xk, γ

j
0∆k).

In Step 1.5, the trust region is updated according to the feasibility of the trial point x+,
the ratio ρk of the actual improvement to the predicted improvement, and the quality
(as measured by the model being fully linear on the current trust region) of the models
for the objective and constraint functions. In particular, the trust-region center is moved
to x+ if x+ is feasible and either ρk is at least the threshold η1 or 0 < ρk < η1 and the
models for the objective and constraints are fully linear within the current trust region.
In all other cases, the trust-region center remains the same. The trust-region radius is
increased if x+ is feasible, the actual reduction was significant (ρk ≥ η1), and the step size
was sufficiently close to being bound by the trust region (‖x+−xk‖k ≥ β∆k). Moreover,
the trust-region radius is decreased if the models for the objective and constraints are
fully linear within the current trust region and either x+ is feasible and ρk < η1 or x+ is
infeasible. In all other cases, the trust-region radius remains the same.
In Step 1.6 we consider the case when the trust-region remains unchanged and thus

the quality of the local models should be improved. We avoid doing an evaluation when
the subproblem solution x+ is deemed to improve the quality of the models. When x+
does not improve the models, we follow a procedure based on that in [40] but modified
for the constrained setting as described in Section 3.5.

3.5 Model-Improving Points

We now describe our revision of model-improving points for the generally constrained
case.
Given an interpolation set Y containing 0, a trust region Rk(xk,∆k), and positive

constants c ≥ 1 and θ1 ∈ (0, 1], the ORBIT algorithm certifies models mk as being fully
linear on Rk(xk,∆k) if there are n points, y1, . . . , yn, in Y with the following properties:
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M1. yi ∈ Rk(0, c∆k), i = 1, . . . , n;
M2. xk + yi ∈ B, i = 1, . . . , n; and
M3. the pivots of QR = 1

∆k
[y1 · · · yn] satisfy |rii| ≥ θ1, i = 1, . . . , n.

Provided that xk ∈ B and θ1 ≤ θmin := 1
2 mini=1,...,n{ui − li}, one can always find

such points by choosing appropriate signs for the coordinate directions e1, . . . , en. The
existence of these coordinate directions ensures that the RBF models can be made fully
linear in any trust region by performing at most n additional evaluations of f and g. Such
additional evaluations, however, are wasteful in practice and can be avoided by exploiting
the affine independence of nearby, previously evaluated points. Hence, ORBIT produces
an orthonormal basis z1, . . . , zp ⊂ Rn orthogonal to directions in Y determined to be
sufficiently independent (as measured by the parameter θ1). ORBIT then determines a
model-improving point y− = α1z1+ · · ·+αpzp that satisfies the conditions M1–M3 when
added to these sufficiently independent directions.
Formally, the procedure shown in Algorithm 2 is performed.

Algorithm 2 General bound-constrained model-improvement procedure.

0. Initialization. Given orthonormal directions z1, . . . , zp, xk, ∆k, and parameter θ1.
1. Loop over directions. For i = 1, . . . , p:

2.1 Check projection Let t+ = maxt≤1 {t : xk + t∆kzi ∈ B} and t− =
maxt≤1 {t : xk − t∆kzi ∈ B}.
• If t+ ≥ θ1:

Set x− = xk + t+∆kzi and return.
• Elseif t− ≥ θ1:

Set x− = xk − t−∆kzi and return.
• Elseif i = p:
Return, reset candidate model-improving directions to e1, . . . , en.

• Else continue to next i.

The directions input to Algorithm 2 are orthogonal to a partial set of yi positioned
to satisfy M1–M3, and thus the procedure ensures that the output direction x− − xk is
also positioned to satisfy M1–M3. When no output is provided, the algorithm indicates
that the directions need to be rotated, an action that may result in the evaluation of
up to n model-improving points (associated with the coordinate directions, which are
are guaranteed to result in termination of Algorithm 2 as discussed above regarding the
parameter θ1).
Since the interpolation sets used in CONORBIT are common to both the objective

and constraints models, this procedure can also be used in CONORBIT to obtain fully
linear models. Furthermore, in implementations of ORBIT, we choose the signs and the

order of the directions z1, . . . , zp based on predicted objective values mf
k(xk±∆kzi). Since

the procedure ignores the general constraints g, however, the resulting model-improving
point x− = xk + y− ∈ Rk(xk,∆k)∩B may be infeasible (with respect to g) and thus will
be of little benefit to future iterations.
Consequently, in CONORBIT we modify the procedure to favor points that are more

likely, as predicted by the current models, to be feasible. Currently this modification is
done by determining the sign and ordering of the directions z1, . . . , zp to minimize the
number of predicted constraint violations,

∑q
j=1 Imgj

k (xk±∆kzi)
.

Unfortunately, because the t+ (or t−) values produced by Algorithm 2 can be less than
1, this strategy alone may not be effective. Ideally, one wants to solve the equivalent of
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a trust-region subproblem in the subspace spanned by z1, . . . , zp. When the margin is
enforced, this would look like

min
α

{
mf

k(xk +∆kZα) :

mg
k(xk +∆kZα) + ξ

q∑

i=1

I[gi(xk)≤−ξ]ei ≤ 0, xk +∆kZα ∈ Rk(xk,∆k) ∩ B
}
.

(14)
If the approximate solution α ∈ Rp obtained satisfies ‖α‖ ≥ θ1, then the model-improving
point x− = xk +∆kZα satisfies M1–M3.
If the obtained α does not solve this, then we solve the nonconvex problem

min
α

{∥∥max
{
0,mg

k(xk +∆kZα),
}∥∥ : ‖α‖ ≥ θ1, xk +∆kZα ∈ Rk(xk,∆k) ∩ B

}
, (15)

which attempts to minimize the constraint violation, while keeping α sufficiently bounded
away from zero (through θ1). We can again output x− = xk + ∆kZα since it sat-
isfies M1–M3. If no solution to (15) is obtained (e.g., because the feasible region
{α : ‖α‖ ≥ θ1, xk +∆kZα ∈ Rk(xk,∆k) ∩ B} is empty), then we again resort to coordi-
nate directions in place of Z.

3.6 Radial Basis Function Models

We now briefly review radial basis functions, which we use to model both the objectives
and nonlinear constraints in CONORBIT.
For convenience, we take g0 := f so that the objective and constraint functions are

collectively denoted by g0, g1, . . . , gq. Given a current iterate xk and a single set of inter-

polation points Y = {yj}|Y|
j=1, where gi(xk+yj) is known for i = 0, 1, . . . , q, j = 1, . . . , |Y|,

we fit RBF models mf
k = mg0

k and mg
k = (mg1

k ,mg2
k , . . . ,m

gq
k ) of the form

mgi
k (xk + s) =

|Y|∑

j=1

λgi
j φ(‖s− yj‖) + pgi(s) for i = 0, 1, . . . , q.

Here, φ : R+ → R is a radial function that could take one of several forms as discussed
next, λgi

j ∈ R, and pgi is a polynomial.
We now state a property of RBFs that we will employ when forming our models.

Definition 3.8 Let π = [π1, . . . , πp̂] be a basis for n-variate polynomials of degree d−1,
with the convention that π = ∅ if d = 0. A function φ : R+ → R is said to be conditionally
positive definite of order d ≥ 0 if for all sets of distinct points Y ⊂ Rn and all λ 6= 0

satisfying
∑|Y|

j=1 λjπ(yj) = 0, the quadratic form
∑|Y|

i=1

∑|Y|
j=1 λiλjφ(‖yi− yj‖) is positive.

Wild and Shoemaker [41] provide a list of popular twice continuously differentiable
RBFs and their order of conditional positive definiteness. For example, the cubic form
(with radial function φ(r) = r3) is conditionally positive definite of order 2, whereas the
Gaussian form (with radial function φ(r) = exp(−r2/γ2), where γ > 0 is a hyperparam-
eter) is conditionally positive definite of order 0. Note that if φ is conditionally positive

definite of order d, then it is also conditionally positive definite of order d̂ ≥ d.
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3.7 Forming RBF Models

We now provide the details for forming the RBF models that are used in CONORBIT.
Given a radial function, polynomial order and basis of dimension p̂, and an interpolation
set Y of |Y| ≥ p̂ distinct points, we define Φ ∈ R|Y|×|Y| by Φi,j = φ(‖yi − yj‖) and

Π ∈ Rp̂×|Y| by Πi,j = πi(yj). RBF models are then determined by solving the following
linear system with multiple right-hand sides:

[
Φ ΠT

Π 0p̂×p̂

] [
λg0 λg1 . . . λgq

νg0 νg1 . . . νgq

]
=

[
G0 G1 . . . Gq

0p̂×1 0p̂×1 . . . 0p̂×1

]
, (16)

where Gi = [gi(xk + y1), . . . , gi(xk + y|Y|)]T for i = 0, 1, . . . , q.
The coefficient matrix of (16) is symmetric but it is generally indefinite. However, the

system can be solved in a numerically stable manner by relying on the conditional positive
definiteness of φ and by requiring that p̂ of the points in Y be poised for interpolation by
a d−1 degree polynomial. This latter condition is equivalent to requiring that Π has full
row rank, a property that is maintained for the interpolation sets used in both ORBIT
and CONORBIT. Now consider the truncated QR factorization ΠT = QR. Since ΠT

have full column rank, R is nonsingular. From (16), we have

Πλgi = 0p̂×1 for i = 0, 1, . . . , q.

Let Z ∈ R(|Y|−p̂)×(|Y|−p̂) be the orthogonal matrix whose columns form an orthonormal
basis for Null(Π). Then for all i = 0, 1, . . . , q, λgi = Zωgi for some ωgi ∈ R|Y|−p̂ and (16)
reduces to

ZTΦZwgi = ZTGi, Rνgi = QT (Gi − ΦZωgi), i = 0, 1, . . . , q. (17)

It follows from φ being conditionally positive definite of order d that ZTΦZ is positive
definite, and hence these solutions are well defined.
In CONORBIT, we will strive for (but do not require on all iterations) fully linear RBF

models. Consequentially, we will require that the radial function φ used be conditionally
positive definite of order d = 2 (this includes all the radial functions mentioned in [41]).
Note that in this case we will also require a linear polynomial tail, so that p̂ = n+1 and
we require that Y contain n+ 1 points that are affinely independent.
Because a common interpolation set is employed for mf ,mg1 , . . . ,mgp , certifying that

any one of these RBF models is fully linear is equivalent to certifying that all these
models are fully linear (provided that f, g1, . . . , gp all satisfy the regularity conditions
assumed in Theorem 3.2).
The formation of the RBF models in Step 1.1 of Algorithm 1 now identically follows

that in ORBIT but with q+1 right-hand sides. In particular, we use the same additional
input parameters for forming the RBF models from [40] and [41]: pmax ≥ n+1 (maximum
number of interpolation points) and θi for i = 1, . . . , 4 satisfying θ2 > 0, θ4 ≥ θ3 ≥ 1 and
0 < θ1 ≤ 1/θ3.

3.8 Demonstration of CONORBIT on a Two-Dimensional Problem

To illustrate the CONORBIT algorithm in two dimensions, we consider the following con-
strained optimization problem (modified from [20] to have a single nonlinear constraint
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for ease of illustration):

min
{
x+ y : 1.5− x− 2y − 0.5 sin(2π(x2 − 2y)) ≤ 0, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

}
. (18)

We employ a cubic RBF model (φ(r) = r3) with a linear polynomial tail, do not use a
margin (ξ = 0), and use ‖ · ‖k = ‖ · ‖2 for all k.
Figure 1 (top left) shows the feasible region of the problem and the contour lines

of the objective function. Note that the feasible region (covering the northeast region)
is nonlinear and nonconvex and that the direction of improvement for the objective
function is southwest. The starting point is at x0 = [0.7, 0.6]. In order to build the initial
RBF models, the objective and constraint functions are also evaluated at the points
[0.7, 0.8] and [0.9, 0.6], which are ∆0 = 0.1 units away from the starting point along the
positive coordinate directions. Next, Figure 1 (top right) shows the boundary of the RBF
constraint (i.e., mg

k(x) = 0), the initial trust region and the current step as determined
from the trust-region subproblem (10). We note that the RBF models are all linear since
there are only n+1 points. We also note that the RBF constraint model is not active at
the subproblem solution.
Figure 1 (bottom left) and (bottom right) show the trajectory of CONORBIT during

iterations 3 and 5, respectively. Observe that the RBF constraint boundaries are now
nonlinear and that CONORBIT has generated points that were infeasible with respect
to the nonlinear constraint (points 5 and 7). However, the trust-region center always
remains feasible.
The numerical experiments below suggest that the RBF models of the constraints need

not be accurate approximations of the actual constraints in order to be useful. What is
critical is that the models be able to separate the feasible and infeasible sample points
and provide a reasonable approximation of the feasible and infeasible regions within the
trust region.

4. Numerical Experiment Setup

In this section we summarize the problems and algorithms considered in our numeri-
cal experiments, the results of which are described in Section 5. All computations are
performed in Matlab 7.11.0 using an Intel Core i7 CPU 860 2.8 GHz desktop machine.

4.1 MOPTA08: Automotive Design Optimization

The first problem we consider is a multidisciplinary optimization problem from the auto
industry derived from the problem posed by Jones [22] during the MOPTA 2008 con-
ference. The goal is to determine the values of decision variables (e.g., shape variables)
that minimize the mass of an automotive vehicle subject to performance constraints (e.g.,
crashworthiness, durability). Because our proposed method is designed for relatively low-
dimensional constrained black-box optimization problems, the actual problem we use is a
smaller version of the original 124-dimensional MOPTA08 problem [22]: only 12 decision
variables are allowed to vary, while the rest of the decision variables are fixed to the cor-
responding values for the best solution found by Regis [35]. As in the original MOPTA08
problem, there are 68 black-box inequality constraints and [0, 1] bound constraints. This
smaller problem is referred to as MOPTA08-12D.
The original MOPTA08 problem is available as a Fortran code in [1], and the settings

for the decision variables that have been fixed to obtain the MOPTA08-12D problem are
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Figure 1. Initial function evaluations and iterations 1, 3, and 5 of CONORBIT (2-norm) on (18).

provided in the Appendix.
The MOPTA08-12D problem has smooth objective and constraint functions because

these functions are based on kriging response surfaces to a proprietary automotive design
problem. The simulation time needed to evaluate the objective and constraints takes
about 0.32 seconds, while each simulation of the real version could take many minutes.

4.2 Styrene: Chemical Process Optimization

We also consider a chemical process optimization problem called the Styrene problem.
The goal is to maximize the net production value (NPV) of the Styrene production
process. The process of Styrene production underlying this problem is discussed in [37],
and the simulation-based optimization of this process was studied in [2].
In theory, the objective NPV is a smooth function that depends on the operating

costs, sales, income tax and actualization rates, depreciation, and investment. These
components depend on process variables such as reactor dimensions, heater and cooler
temperatures, pump pressure, and air fraction. In addition, there exist process-based
(e.g., purity levels and environmental regulations) and economic-based constraints on
the variables. The dependency of NPV and the constraints on the variables generally
cannot be expressed in closed form.
We work with the same black-box simulator used in [2]. There are n = 8 decision vari-

ables and q = 11 black-box inequality constraints. The black-box simulator has hidden
constraints, in the sense that there are domains Ωf ⊂ B and Ωg ⊂ B such that the simu-
lator returns f(x) = M for x /∈ Ωf and g(x) = Me for x /∈ Ωg, where M is a large value
(1020) and e is the vector of 1’s in R11. In our tests of the simulator, we have observed that
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Ωf = {x ∈ B : g8(x) < c̄}, where c̄ > 0 (i.e., the function value M is returned if g8 goes
above a threshold). We note that Ωf ⊂ Ωg. The first four constraints are binary (taking
values in {0, 1}), which in [25] is referred to as nonquantifiable constraints. We note that
because of these characteristics, the Styrene problem clearly violates the smoothness as-
sumption (C2). For feasible points, the simulator takes around one-and-a-half seconds to
evaluate the function and constraints.

4.3 Test Problems

To facilitate tests on a broader set of problems, we also consider 27 test problems from
the literature. The set comprises the problems used by Conn and Le Digabel [10] that
have inequality constraints, 20 problems used by Regis [34, 35] that are widely used
in the engineering optimization literature, and four engineering design problems: WB4
(welded beam design), GTCD4 (gas transmission compressor design), PVD4 (pressure
vessel design), and SR7 (speed reducer design). The number of variables and constraints
in these problems are given in Table A1 in the Appendix.
Like the MOPTA08-12D and Styrene problems, the objective and constraint functions

of these problems are not expensive to evaluate. In addition, as was done in previous
studies (e.g., [34]), the objective or constraint functions of some of the test problems
are rescaled either by dividing by some positive constant or by applying a logarithmic
transformation without changing the feasible region and the location of the optima before
any algorithms are applied. The purpose of this rescaling is to make the function values
less extreme and avoid problems with fitting RBF models.

4.4 Alternative Methods and Parameter Settings

Two implementations of CONORBIT (2-norm and ∞-norm versions) are compared
with the following alternative methods: SDPEN [26], NOMAD [3, 24], COBYLA [30],
AUGLAG [9, 16] with BOBYQA [33] as the subalgorithm, and the ConstrLMSRBF
heuristic [34]. NOMAD is available through the OPTI toolbox [14]. COBYLA, AUGLAG,
and BOBYQA are all available through the NLopt package [21], which is also available
through the OPTI toolbox.
NOMAD is an implementation of MADS [3] and SDPEN is a sequential penalty

derivative-free algorithm. COBYLA is a derivative-free trust-region method that uses
linear interpolation models for the objective and constraint functions. AUGLAG is an im-
plementation of an augmented Lagrangian algorithm, and BOBYQA is a derivative-free
trust-region algorithm for bound-constrained optimization that uses a minimum Frobe-
nius norm quadratic model. In addition, ConstrLMSRBF is a heuristic method that uses
RBF models of the objective and constraint functions to select function evaluation points
from a set of randomly generated candidate points. In every iteration, ConstrLMSRBF
chooses its function evaluation point to be the best candidate point according to two
criteria—predicted objective function value and minimum distance from previously eval-
uated points—from among the candidate points with the minimum number of predicted
constraint violations.
The values of the CONORBIT parameters are summarized in Table 1. Note that these

parameters are set with the assumption that the region defined by the bound constraints
has been scaled to the unit cube [0, 1]n. A cubic RBF model with a linear polynomial tail
is used for both of the tested CONORBIT algorithms (2-norm and ∞-norm versions).
Moreover, in addition to the given starting point, the CONORBIT algorithms use n
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Table 1. Parameter settings for CONOR-
BIT (2-norm and ∞-norm).

Parameter Value Parameter Value

∆0 0.2 β 0.5
∆max 0.5 pmax 2n+ 1
η0 0 θ1 10−3

η1 0.2 θ2 10−7

γ0 1/2 θ3 2
γ1 2 θ4

√
n

additional initial points obtained by moving ∆0 units from the starting point in each of
the n positive coordinate directions. If x0 +∆0ei violates one of the bound constraints,
then this point is replaced by x0 − ∆0ei, and this will satisfy the bound constraints
provided ∆0 ≤ 0.5.
As mentioned earlier, Regis [35] found that a small margin on the RBF constraints

helped improve the performance of an algorithm that uses RBF models for the con-
straints. Hence, we performed extensive tests to check whether such a margin is also
helpful for CONORBIT. That is, we ran CONORBIT with various settings for the mar-
gin ξ ≥ 0 so that Step 1.3 of Algorithm 1 approximately solves the trust-region subprob-
lem (10). If (10) turns out to be infeasible, then the margin is removed (i.e., ξ = 0) only
on the constraints where the margin causes this subproblem to become infeasible. The
purpose of the margin is to make the solution to the trust-region subproblem strictly
feasible with respect to as many RBF inequality constraints as possible and thereby
increase the likelihood that the next iterate will be a feasible point. The results are dis-
cussed in Section 5.4. These experiments suggest that a value of ξ = 10−6 works well on
the problems in this study, and hence this will be the default value of ξ when comparing
CONORBIT with the other methods.
In addition to a margin on the RBF model constraints, we found that delaying the re-

duction of the trust-region radius when the iterates are infeasible for some fixed number
of function evaluations substantially improves the short-term performance of CONOR-
BIT. Numerical results for this delay trust-region reduction heuristic are discussed in
Section 5.5. Hence, for the comparison with other methods, this heuristic is implemented
in CONORBIT.
We use the NOMAD software [24] and the NLopt software [21] through the OPTI tool-

box [14] that runs in Matlab. The NLopt software includes implementations of COBYLA
and an augmented Lagrangian method called AUGLAG. We run AUGLAG using
BOBYQA as the subalgorithm. These methods that are run through the OPTI toolbox
will be referred to as OPTI-NOMAD, OPTI-COBYLA, and OPTI-AUGLAG-BOBYQA.
We also developed a Matlab implementation of SDPEN, which we call SDPENm. Default
values for OPTI-NOMAD, OPTI-COBYLA, OPTI-AUGLAG-BOBYQA, and SDPENm
are used in all comparisons. For ConstrLMSRBF, a Latin hypercube design of size n+1
is used for initialization, and the type of RBF model used is the same one used by the
CONORBIT algorithms. Moreover, the parameter values for ConstrLMSRBF are the
same as those used in [34].
In all numerical comparisons in this study, each algorithm is run 30 times on each

of the 27 test problems and 10 times on the Styrene and MOPTA08-12D applications.
Each run corresponds to a different feasible starting point, but the same feasible starting
point is used for the different algorithms in a given run. Since this study focuses only
on the case where a feasible starting point is provided, the numerical work to obtain the
feasible starting points for the different problems is performed in the background and is
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not included in the comparisons.

4.5 Limitation of the Comparative Experiments

Before we compare CONORBIT with other methods in the next section, we recall that
we used default parameter settings for the alternative methods. However, it might still
be possible to improve their performance on the test problems used by tuning their
parameters. Our goal in this paper is not to prove that the proposed CONORBIT algo-
rithm is superior to the other methods. Rather, we simply wish to make the case that
CONORBIT ought to be considered as a promising method for constrained black-box
optimization, by demonstrating that it performs reasonably well on a wide variety of test
problems and on two important applications.

5. Results and Discussion

We compare the CONORBIT variants with alternatives using performance and data
profiles [17, 27]. We take a problem p to be defined by the pairing of a test problem
(from Table A1) and a starting point. Since we have 27 test problems and 30 starting
points, we consider 27 × 30 = 810 problems in total. Given a set P of problems, we
run a set S of solvers. In the comparisons, there are 7 solvers: CONORBIT (2-norm),
CONORBIT (∞-norm), OPTI-NOMAD, OPTI-COBYLA, OPTI-AUGLAG-BOBYQA,
SDPENm, and ConstrLMSRBF.
For any pair (p, s) ∈ P × S, the performance ratio is

rp,s =
tp,s

min{tp,s : s ∈ S} ,

where the performance measure tp,s is the number of simulations required to satisfy the
convergence test described below. Here, one simulation yields the objective function value
f(x) and constraint function values g(x) for a given input x. Clearly, rp,s ≥ 1 for any
p ∈ P and s ∈ S. Moreover, for a given problem p, the best solver s for this problem
attains rp,s = 1. Furthermore, by convention, rp,s =∞ whenever solver s fails to yield a
solution that satisfies the convergence test.
For any solver s ∈ S and for any α ≥ 1,

ρs(α) =
1

|P| |{p ∈ P : rp,s ≤ α}|

gives the fraction of problems where the performance ratio is at most α. The performance
profile ρs(α) measures the performance of solver s relative to the solvers in S on the
problem set P.
Next, given a solver s ∈ S and α > 0, the data profile of a solver s on problem set P is

ds(α) =
1

|P|

∣∣∣∣
{
p ∈ P :

tp,s
np + 1

≤ α

}∣∣∣∣ ,

where tp,s is again the number of simulations required by solver s to satisfy the conver-
gence test on problem p and np is the number of variables in problem p. For a given
solver s and any α > 0, ds(α) is the fraction of problems “solved” (i.e., problems where
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Figure 2. Data profiles of the algorithms on the test problems with 30 different feasible starting points, ǫ = 10−8

and τ = 0.01. The test problems have 2 to 30 decision variables and 1 to 38 inequality constraints.

the solver generated a point satisfying the convergence test) by s within α · (np + 1)
simulations (equivalent to α simplex gradient estimates) [27].
In the context of derivative-free, expensive constrained black-box optimization, algo-

rithms are compared given a fixed and relatively limited number of simulations. Hence,
our convergence test uses tolerances ǫ, τ > 0, and it checks whether a point x obtained
by a solver satisfies

max
i=1,...,q

gi(x) ≤ ǫ, and f(x(0))− f(x) ≥ (1− τ)
(
f(x(0))− f

ǫ,S,µf

L

)
. (19)

Here, f
ǫ,S,µf

L = mins∈S {f(xs) : gi(xs) ≤ ǫ ∀i = 1, . . . , q} is the minimum objective func-
tion value of ǫ-feasible points obtained by any of the solvers within a given budget µf of
simulations.
Since the starting point x(0) is feasible in all our tests, it follows that at least one solver

s ∈ S will satisfy the convergence test (19) for any given ǫ, τ, µf > 0. In cases where there
are multiple points from solver s satisfying (19) on problem p, the performance measure
tp,s is taken to be the minimum number of evaluations needed to satisfy (19).

5.1 Comparison with Alternative Methods on Test Problems

Figure 2 shows the data profiles of the various solvers on the test problems in this study.
The subfigures show the data profiles on all 27 test problems (Figure 2(a)), the 8 test
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Figure 3. Performance profiles of the algorithms on all test problems with 30 different feasible starting points,
ǫ = 10−8 and τ = 0.01. The test problems have 2 to 30 decision variables and 1 to 38 inequality constraints.

problems used by Conn and Le Digabel [10] (Figure 2(b)), and the 20 test problems
used by Regis [34, 35] (Figure 2(c)). Here, the tolerances for the convergence test are
ǫ = 10−8 and τ = 0.01. These data profiles are calculated up to a maximum number
of simulations that is equivalent to 150 simplex gradient estimates. Figure 3 shows the
performance profiles of the solvers given a computational budget of 200 simulations and
300 simulations on all 27 test problems.
The data profiles in Figure 2 show that the CONORBIT algorithms (with ξ = 10−6

and with the delay trust-region reduction heuristic) are generally better than the al-
ternatives on the test problems. In particular, they are much better than SDPENm,
OPTI-AUGLAG-BOBYQA, and OPTI-NOMAD, as can be seen from the wide gap be-
tween the corresponding data profiles. Moreover, the CONORBIT algorithms are an
improvement over OPTI-COBYLA and ConstrLMSRBF. For example, the data profiles
in Figure 2(a) show that CONORBIT (∞-norm) and CONORBIT (2-norm) satisfy the
convergence test in about 60% of the problems within 100 simplex gradient estimates.
In contrast, SDPENm and OPTI-AUGLAG-BOBYQA satisfy the convergence test for
less than 30% of the problems, and OPTI-NOMAD satisfies the convergence test for less
than 50% of the problems within the same computational budget.
Next, the performance profiles after 200 or 300 simulations in Figure 3 show that

the fraction of problems for which the CONORBIT algorithms are the best is about
30%, while the corresponding fractions for all alternative methods (other than Con-
strLMSRBF) are around 10% or less. Furthermore, the fraction of problems where the
performance ratio is at most α = 4 after 200 or 300 simulations is more than 60% for
the CONORBIT algorithms, around 50% for OPTI-COBYLA and ConstrLMSRBF, and
less than 15% for the other methods.
We also plotted the corresponding data and performance profiles where the tolerance ǫ

was set to 0. The profiles for all the solvers except OPTI-COBYLA did not really change.
For OPTI-COBYLA, we note a substantial deterioration in performance, indicating that
this algorithm was using an internal default constraint tolerance that is ≤ 10−8. To be
fair to OPTI-COBYLA, we set ǫ = 10−8 in all profiles.
These results provide further evidence that the use of interpolation models for the

black-box constraints can yield substantial performance improvements in the compu-
tationally expensive setting. Neither OPTI-NOMAD nor SDPENm uses models for the
constraints, while OPTI-COBYLA uses linear interpolation models for the black-box ob-
jective and constraint functions and ConstrLMSRBF uses the same type of RBF model
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Figure 4. Mean of the best feasible objective function value versus the number of simulations for the MOPTA08

problem. The error bars for the stochastic algorithms correspond to 95% t confidence intervals for the mean.

for the black-box functions as the CONORBIT algorithms do. Moreover, although OPTI-
AUGLAG-BOBYQA uses quadratic interpolation models of the augmented Lagrangian
function, this does not appear to be as effective as building models for the constraints. The
performance of SDPENm, OPTI-NOMAD, and OPTI-AUGLAG-BOBYQA will most
likely improve if they also use models for the constraints.

5.2 Comparison with Alternative Methods on the Automotive Application

Figure 4 shows the graphs of the mean of the best feasible objective function value
obtained by various algorithms versus the number of simulations on the MOPTA08-12D
problem. We refer to these graphs as average progress curves. Recall that each algorithm
is run for 10 trials on the MOPTA08-12D problem, where each trial begins with a different
feasible starting point. The error bars correspond to 95% t confidence intervals for the
mean.
The average progress curves show much better performance for the CONORBIT algo-

rithms compared with OPTI-NOMAD, OPTI-AUGLAG-BOBYQA, and SDPENm up
to 1,000 simulations on the MOPTA08-12D problem. Moreover, CONORBIT (2-norm)
shows better performance, while CONORBIT (∞-norm) is competitive with OPTI-
COBYLA. In addition, CONORBIT (2-norm) is competitive with ConstrLMSRBF.
The MOPTA08-12D problem is smooth, so model-based methods such as CONOR-

BIT, COBYLA, and ConstrLMSRBF are expected to perform well. However, the results
for OPTI-COBYLA suggest that RBF models are better than linear interpolation mod-
els in approximating the 68 black-box constraints in the MOPTA08-12D problem and
effectively guiding the trust-region steps. Moreover, the results for OPTI-AUGLAG-
BOBYQA suggest that using interpolation models for the augmented Lagrangian func-
tion is not as effective as using interpolation models directly on the black-box constraints.

5.3 Performance of CONORBIT on the Styrene Problem

Since CONORBIT is a model-based method, it is not expected to perform well on prob-
lems where the surfaces of the objective or constraint functions are highly nonsmooth
and also on problems with hidden constraints or binary constraints such as the Styrene
problem. With a hidden constraint, the simulator typically returns a large value for the
objective and constraint functions when it is violated. Moreover, a binary constraint
function is highly discontinuous. Hence, the presence of hidden or binary constraints
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problem. The error bars for the stochastic algorithms correspond to 95% t confidence intervals for the mean.
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Figure 6. Data profiles for CONORBIT with various RBF constraint margins on all test problems with 30 different

feasible starting points, ǫ = 10−8 and τ = 0.01.

generally results in poor approximation of these constraints using interpolation models.
Figure 5 shows the average progress curves for the CONORBIT algorithms and the

alternative methods on the Styrene problem with a computational budget of 500 simu-
lations. As with the MOPTA08 problem, each algorithm is run for 10 trials, where each
trial begins with a different feasible starting point.
As mentioned earlier, this problem is highly nonsmooth because of the presence of

binary constraint values and because of the handling of its hidden constraints. Recall
that if a point violates the hidden constraints, the Styrene code yields a high value
of 1020 for the objective and all constraint functions. The average progress curves on
the Styrene problem show that OPTI-NOMAD is much better than the other methods,
followed by the CONORBIT and ConstrLMSRBF.

5.4 Effect of the RBF Constraint Margin on the Performance of
CONORBIT

Extensive testing was performed to study the effect of having a small margin on the RBF
models of the inequality constraints in CONORBIT. Figure 6 shows the data profiles for
CONORBIT (2-norm and ∞-norm implementations) with different values for the RBF
constraint margin: ξ = 0, 10−6, 10−4, 10−3, and 10−2. Recall that the bound constraints
for all problems were rescaled to [0, 1]n so these values for ξ are based on this rescaling.
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Figure 7. Performance profiles for CONORBIT after 300 simulations with various RBF constraint margins on all
test problems with 30 different feasible starting points, ǫ = 10−8 and τ = 0.01.
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Figure 8. Data profiles for CONORBIT with various settings of the delay heuristic on all test problems with 30
different feasible starting points, ǫ = 10−8 and τ = 0.01.

Figure 7 shows the performance profiles for CONORBIT with various RBF constraint
margins after 300 simulations, respectively. These profiles are calculated on all 27 test
problems with 30 different feasible starting points. Hence, each profile plot has 27×30 =
810 problems and 5 solvers. As before, the tolerances for the convergence test are ǫ = 10−8

and τ = 0.01.
The data and performance profiles consistently show that using an RBF constraint

margin improves the performance of CONORBIT. Moreover, these profiles show that the
performance of CONORBIT is not sensitive to the choice of the margin ξ. In particular,
CONORBIT (2-norm or ∞-norm) with an RBF constraint margin of anywhere from
10−6 up to 10−2 performs much better than CONORBIT without any RBF constraint
margin. A possible reason for this robust behavior with respect to the margin is that the
margin of an RBF constraint is removed whenever it causes the trust region subproblem
to become infeasible. However, the profiles also show that when the margin is too large
(e.g., when ξ = 10−2), the performance of CONORBIT deteriorates slightly. Figures 6–7
consistently show that an RBF constraint margin of either 10−4 or 10−6 appear to be
good choices for the test problems used. In all other experiments as well as in the default
parameter settings for CONORBIT, we use a margin of ξ = 10−6.
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Figure 9. Performance profiles for CONORBIT after 300 simulations with various settings of the delay heuristic
on all test problems with 30 different feasible starting points, ǫ = 10−8 and τ = 0.01.

5.5 Improving the Practical Performance of CONORBIT

The previous section showed that the performance of CONORBIT can be improved by
using a small margin on the RBF constraints. This section shows that the performance
of CONORBIT can be further improved by delaying the shrinking of the trust region
when the iterate turns out to be infeasible. Recall that the trust region is reduced when
the iterate is infeasible and the models are fully linear within the trust region. In the
numerical experiments, the iterates end up infeasible in many iterations even when the
models are fully linear, and this results in the rapid shrinking of the trust regions. This
result is expected because, for highly constrained problems, generating feasible iterates
early in the search is not likely since the models might not be accurate enough even if
they are fully linear within the trust region. As a result of the smaller trust regions, the
progress of CONORBIT was relatively slow on many of the problems.
To deal with this issue, we introduced a delay trust-region reduction heuristic in

CONORBIT where the trust region is not reduced for some fixed number of simula-
tions, denoted by h, even when the iterate is infeasible and the models are fully linear
within the trust region. Note that this heuristic can also be interpreted as an initialization
procedure that is implemented before the actual trust-region iterations are performed.
To test this idea, we ran CONORBIT with a margin of ξ = 10−6 on all the test problems
(30 trials per problem as before) where this delay heuristic is set at h = 0, h = 5(n+ 1)
and h = 10(n+1). The data profiles are shown in Figure 8, and the performance profiles
after 300 simulations are shown in Figure 9. The results clearly show an advantage of im-
plementing this delay heuristic in both the 2-norm and∞-norm versions of CONORBIT.
In particular, a setting of h = 10(n+1) yields the best result among the values of h con-
sidered. Hence, the default value of the delay heuristic will be set at h = 10(n+1) along
with a margin of ξ = 10−6 when CONORBIT is compared with alternative methods.

5.6 Running Times on the Automotive Application Problem

Table 2 shows the overhead running times (i.e., excluding total times spent on func-
tion evaluations) of the CONORBIT algorithms and alternatives on the MOPTA08-12D
problem after 1,000 simulations. For example, the overhead running time of CONORBIT
(2-norm) on MOPTA08-12D is 788.29 sec (13.14 min) for 1,000 simulations.
Clearly, the running times of the CONORBIT algorithms on MOPTA08-12D are much

longer than those of the non-model-based alternative methods such as OPTI-NOMAD
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Table 2. Average running times (over 10 trials) of

the different algorithms on 1,000 simulations of the

MOPTA08-12D problem with 12 decision variables and

68 black-box inequality constraints (excluding time

spent on simulations) on an Intel Core i7 CPU 860 2.8

GHz desktop machine.

Algorithm Average Running Time

CONORBIT (2-norm) 788.29 sec
CONORBIT (∞-norm) 829.36 sec

SDPENm 1.16 sec
OPTI-NOMAD 66.05 sec
OPTI-COBYLA 2.38 sec

OPTI-AUGLAG-BOBYQA 2.38 sec
ConstrLMSRBF 156.48 sec

and SDPEN. For truly expensive functions, the running times for CONORBIT are still
much smaller than the total time spent on function evaluations. For example, if each
simulation of the MOPTA08-12D problem takes 1 hour, then the mean running time
of CONORBIT (2-norm) for 1,000 simulations would be 1000.22 hours while the mean
running time of SDPENm for 1,000 simulations would be 1000.0003 hours. However,
from Figure 4, the mean of the best feasible objective value obtained by CONORBIT
(2-norm) is better than that obtained by SDPENm after 1,000 simulations.
We did not report the average overhead running times on the test problems because

most of these are smaller than the overhead running times on MOPTA08-12D. Note that
if the simulation time for one of the test problems happens to be expensive, then the
total running time of an algorithm is dominated by the total time spent on simulations.

6. Summary

We developed the CONORBIT algorithm, which is an extension of the ORBIT algorithm
that can be used for problems with black-box inequality constraints. CONORBIT is a
trust-region algorithm that uses interpolating RBF models for the objective and each
of the constraint functions. Moreover, CONORBIT is a feasible point algorithm, and
this is important when dealing with constrained, expensive black-box problems where
only a relatively limited number of function evaluations can be performed. The 2-norm
and∞-norm implementations of CONORBIT were compared with COBYLA, NOMAD,
SDPEN, an augmented Lagrangian algorithm with BOBYQA as the subalgorithm, and
ConstrLMSRBF on 27 test problems, the Styrene chemical process optimization prob-
lem, and an automotive problem with 12 decision variables and 68 black-box inequality
constraints. Performance and data profiles show that the CONORBIT algorithms per-
formed better than SDPEN, NOMAD, COBYLA, ConstrLMSRBF, and the augmented
Lagrangian method on the test problems. Moreover, average progress curves show that
the CONORBIT algorithms performed better than the other alternatives and are com-
petitive with ConstrLMSRBF on the automotive application. However, the CONORBIT
algorithms did not perform as well as NOMAD on the nonsmooth Styrene problem
with hidden constraints. The results on Styrene demonstrate the limitations of CONOR-
BIT and possibly other model-based methods on nonsmooth problems with hidden con-
straints. In addition, this study found that using a small margin on the RBF constraints
and delaying the reduction of the trust region when the iterates are infeasible are both
helpful in improving the practical performance of CONORBIT on the test problems.
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Overall, CONORBIT is a promising algorithm for constrained, expensive black-box op-
timization.
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Appendix A. Information on Test Problems and Automotive Application

Table A1 summarizes the test problems used in our numerical experiments.

Table A1. Constrained optimization test problems: n is the
number of decision variables and q is the number of inequality

constraints.

Test Problem n q Smooth Global Minimum or
Best Known Value

Crescent10 10 2 Yes −9.0

Disk10 10 1 Yes −10
√
3

HS114S 10 11 Yes −1768.806964
HS114NS 9 4 No
MAD6 5 7 No 0.101831
Pentagon 6 15 No −1.85962
Snake 2 2 Yes 0.08098
SR7 7 11 Yes 2994.42
WB4 4 6 Yes 1.7250
GTCD4 4 1 Yes 2964893.85
PVD4 4 3 Yes 5804.45
G2 10 2 No −0.4
G3MOD 20 1 Yes −0.69
G4 5 6 Yes −30665.539
G5MOD 4 5 Yes 5126.50
G6 2 2 Yes −6961.8139
G7 10 8 Yes 24.3062
G8 2 2 Yes −0.0958
G9 7 4 Yes 680.6301
G10 8 6 Yes 7049.3307
Hesse 6 6 Yes −310
G1 13 9 Yes −15
G13MOD 5 3 Yes 0.0035
G16 5 38 Yes −1.9052
G18 9 13 Yes −0.8660
G19 15 5 Yes 32.6556
G24 2 2 Yes −5.5080
MOPTA08 124 68 Yes 222.2324
Styrene 8 11 No −33539100

The algorithms in this paper were tested on a 12-dimensional version of the 124-
dimensional MOPTA08 problem from Jones [22] where only 12 decision variables are
allowed to vary while the rest of the decision variables are fixed to the corresponding
values for the best solution found in [35]. The indices of the variables whose values are 0
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in the best solution for MOPTA08 in [35] are as follows:

{2, 3, 4, 5, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 25, 28, 29, 33, 45, 46, 51, 52, 54, 55,
57, 58, 62, 65, 69, 72, 73, 75, 77, 80, 85, 90, 95, 96, 98, 101, 109, 114, 121, 123, 124}.

The indices of the variables whose values are 1 in the best solution for MOPTA08 in
[35] are {10, 34, 35, 102, 110, 112, 113, 115}. The settings of the other variables in the best
solution for MOPTA08 found in [35] are given in Table A2.
To create the MOPTA08-12D problem, the indices of the variables that are allowed

to vary in the original MOPTA08 problem are {2, 42, 45, 46, 49, 51, 60, 66, 72, 78, 82, 95}.
The variables corresponding to these indices are allowed to vary between 0 and 1 as in
the original problem.

Table A2. Variable settings in the original MOPTA08 problem to create the
MOPTA08-12D problem

Variable Index Value Variable Index Value

1 0.424901536845442 70 0.204560994583241
6 0.070368163337397 71 0.221383426733140
7 0.191758133431455 74 0.094398339150782
8 0.659581587650616 76 0.308945500999398
9 0.312511963893922 78 0.320954495292004
16 0.500523655520237 79 0.735573944494521
22 0.007323697294187 81 0.510228205500305
26 0.691424942460969 82 0.558204538496431
27 0.549284506769106 83 0.527207739609047
30 0.634896580136233 84 0.827802688106254
31 0.246440520422731 86 0.665687979989158
32 0.312017956345506 87 0.724380930097933
36 0.317952882489170 88 0.287131241910361
37 0.855170249994022 89 0.414606427865539
38 0.658962493142454 91 0.419521821597494
39 0.567339401149320 92 0.388002834344305
40 0.191865333482370 93 0.029815463457816
41 0.906569943802102 94 0.631619810505481
42 0.612762717451940 97 0.192333290055701
43 0.033974026079705 99 0.692543616440458
44 0.250858210690466 100 0.669383104588378
47 0.397548021112299 103 0.729141260482755
48 0.050453268214836 104 0.161236677500071
49 0.144718492777280 105 0.561446507760961
50 0.065661350680142 106 0.487479618244102
53 0.401813779445987 107 0.728572274406474
56 0.181619715253390 108 0.240635584133437
59 0.114195768540203 111 0.383816619144691
60 0.393419805218654 116 0.152841300847909
61 0.047400618876390 117 0.158379914361422
63 0.877814656956643 118 0.210185493857930
64 0.767294038418826 119 0.889704350522390
66 0.853786893241821 120 0.791266802460270
67 0.603638877543724 122 0.931445345989215
68 0.330387862928772
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